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Abstract. Unitary irreducible representation of the groupSO(1, 2) is obtained in the mixed
basis, i.e. between the compact and non-compact bases, and new addition theorems are derived
which are required in path integral applications involving a positively signed potential. The
Green function for the potential barrierV = cosh−2ωx is evaluated from the path integration
over the coset spaceSO(1, 2)/K whereK is the compact subgroup. The transition and the
reflection coefficients are given. Results for the moving barrierV = cosh−2ω(x− g0t) are also
presented.

1. Introduction

Path integrations over group manifolds or over homogeneous spaces are frequently used for
solving the path integrals of quantum mechanical potentials [1–3]. For example, Pöschl–
Teller, Hulthen and Wood–Saxon potentials can be related to the groupSU(2) [4]. Path
integrals over theSU(1, 1) manifold are studied for solving the modified Pöschl–Teller
potential [5].

V = − cosh−2ωx, i.e. the symmetric Rosen–Morse potential is the special case
of potentials already mentioned in the above paragraph, which can also be solved by
transforming its Green function into the Green function of the particle motion over the
SO(3) manifold [6].

When the sign of the above potential is changed, that is when we consider the well known
potential barrierV = cosh−2ωx, which is related to the single soliton solution of the KdV
equation, special attention is required. It is not the special case of the Rosen–Morse or the
modified P̈oschl–Teller potentials any longer. It is not related by coordinate transformation
to them either. When one writes thee-value equation for the Laplace–Beltrami (LB) operator
in the space of matrix elements of the unitary irreducile representations ofSO(1, 2) realized
in the compact basis, one arrives at the Schrödinger equation for the potentialV = sinh−2ωx

from which by the substitutionωx = ωx ′ + i π2 we come to the potentialV = − cosh−2ωx ′.
To obtain the positive sign before the latter potential one should diagonolize the LB operator
in the space of matrix elements of the unitary irreducible representation constructed in the
mixed basis, i.e. between the compact and non-compact bases. Such a necessity requries
the derivation of a new addition theorem for these matrix elements to get the path integral
solution. In fact the construction of the unitary ireducible representations in the mixed basis
and the harmonic analysis on the double-sheeted hyperboloid in the hyperbolic coordinate
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system are the basic ingredients of the present note. The approach we adopt is of a general
nature which can be used to obtain the path integral solutions in any homogenous space in
any parametrization. It leads to the path integral solution for the new class of potentials
(see section 2). The wavefunctions of these potentials correspond to the matrix elements
of the unitary irreducible representations in the basis defined by the choice of the group
decomposition.

In section 2 we briefly review the several possible decompositions ofSO(1, 2) relevant
to the coordinates employed in the coset spaces, which are double-sheeted and single-sheeted
hyperboloids, and the cone.

In section 3 we formulate the LB operator for the coset spaceSO(1, 2)/SO(2).
Following the derivation ofSO(1, 2) matrix elements in the mixed basis, we diagonolize
the LB operator, and then arrive at the Schrödinger equation of the potential barrier
V = cosh−2ωx. Normalized wavefunctions and spectrum are given.

In section 4 we present the path integral formulation over the homogeneous space
SO(1, 2)/SO(2). Starting from the short-time-interval Kernel and making use of the newly
derived addition theorems we expand the short-time-interval Kernel in terms of the group
matrix elements.

In section 5, we study the path integration for the potential barrierV = cosh−2ωx.
Transmittion and reflection coefficients are given. Formulae for the barrier moving with a
constant speedg0, i.e. for V = cosh−2ω(x − g0t), which is more relavent to the solitonic
potential, are also presented.

2. Decompositions of the groupSO(1, 2) and related quantum systems

To express the groupSO(1, 2) in the decomposed forms the following one-parameter
subgroups can be employed:

a =
( coshα 0 sinhα

0 1 0
sinhα 0 coshα

)
h =

( coshβ sinhβ 0
sinhβ coshβ 0

0 0 1

)

k =
( 1 0 0

0 cosψ − sinψ
0 sinψ cosψ

)
n =

( 1 + t2

2 t t2

2
t 1 t

− t2

2 −t 1 − t2

2

) (1)

where

α, β ∈ (−∞,∞) ψ ∈ (0, 2π) t ∈ (−∞,∞). (2)

G = SO(1, 2) leaves the form(x, x) = x2
0 − x2

1 − x2
2 invariant. There are three

possibilities:

2.1. Double-sheeted hyperboloidM : (x, x) > 0 [7, 8]

The vectorξ̇ = (1, 0, 0) ∈ M is the stationary point of the compact subgroupk as ξ̇ k = ξ̇ .
Thus the decompositions of the group SO(1,2) related to the double-sheeted hyperboloidM

is

g = kb g ∈ SO(1, 2) k ∈ SO(2). (3)

The choice of the boostb defines the coordinate systems onM:
(i) b = ak or the Cartan decomposition of the groupg = kak′ defines the spherical

coordinate parametrization ofM. This choice is convenient for studying the quantum
mechanical potential 1/ sinh2 α.
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(ii) b = ah or the non-compact Cartan decomposition of the groupg = kah defines
the hyperbolic coordinates onM. It is suitable to the quantum mechanical system with
potential 1/ cosh2 α. This case is the subject of the present work.

(iii) b = an or the Iwasawa decomposition of the groupg = kan defines the parabolic
coordinates onM which leads to the quantum mechanical system with potentialV = exp(α).

2.2. Single-sheeted hyperboloidM : (x, x) < 0 [7, 8]

The vectorż = (0, 0, 1) ∈ M is the stationary point of the non-compact subgrouph as
żh = ż. The decompositions of the groupSO(1, 2) related to the single-sheeted hyperboloid
M has the form

g = hb g ∈ SO(1, 2) h ∈ SO(1, 1) (4)

with the possible choices of the boostb given as the following:
(i) b = ak or the non-compact Cartan decomposition of the groupg = hak defines the

spherical coordinate parametrization ofM which produces the potential−1/ cosh2 α.
(ii) b = (aI εh, kI εh) or decomposition of the groupg = (haI εh, hkI εh) [9] defines

the hyperbolic coordinates onM. HereI is the metric tensor given by

I = diag(1,−1,−1) (5)

and ε = 0, 1. This decomposition is suitable to the quantum mechanical system with
potentials−1/ sinh2 α and−1/ sin2 φ.

(iii) b = aI εn leads to the non-compact Iwasawa decomposition of the groupg = kaI εn

and defines the parabolic coordinates onM. The related quantum mecanical system is
V = − exp(α).

2.3. ConeM0 : (x, x) = 0

The vectorẏ = (1, 0, 1) ∈ M0 is the stationary point of the nilpotent subgroup n asẏn = ẏ.
The decompositions of the groupSO(1, 2) related to the coneM0 has the formg = nb

with b having the following forms:
(i) b = ak is the Iwasawa decomposition which defines spherical coordinates onM0.
(ii) b = aI εh is the non-compact Iwasawa decomposition which defines hyperbolic

coordinates onM0.
(iii) b = anT is the Gauss decomposition which defines spherical coordinates onM0.
It is impossible to relate quantum systems with the cone because the metric tensor of

M0 is degenerate. This space is used for the construction of the irreducible representations
[10]. To construct the irreducible representations in the mixed basis we simultaneously have
to use the realizations given by (i) and (ii) (see appendix A).

3. The double-sheeted hyperboloid in hyperbolic coordinates

We decompose the groupG = SO(1, 2) as

g = hak. (6)

Starting from the stationary poinṫξ = (1, 0, 0) we cover all the homogeneous spaceM by
the act of the group elements asx = ξ̇ g. Using (1) we get the parametrization ofM:

ξ = ξ̇ g = ξ̇ ah = (coshα coshβ, coshα sinhβ, sinhα). (7)
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The metric tensor and the Laplace–Beltrami operator [11] ofM are

gM = diag(−1,− cosh2 α) detgM = cosh2 α (8)

and

1 = −∂2
α − tanhα∂α − cosh−2 α∂2

β. (9)

We will write down thee-value equation for the above LB operator in the space of
SO(1, 2) matrix elements which are evaluated between the compact and the non-compact
basis. The matrix elements of the unitary principle series of the groupSO(1, 2) in the
mixed basis (see appendix A) given by

dσµk(g) = 〈µ|T σ (g)|k〉 (10)

are thee-functions of the invariant differentiale operator1:

1dσµk(g) = −σ(1 + σ)dσµk(g). (11)

Hereσ is the weight of the representation

σ = − 1
2 + iρ ρ ∈ (0,∞) (12)

and |k〉 and |µ〉 are the compact and non-compact bases corresponding to the the degrees
of freedomφ andβ respectively.

Since we are dealing with the coset spaceM = G/K with K = SO(2), we do not need
the full set of the matrix elements (10); instead we employ

dσµ0k (ha) = 〈µ|T σ (ha)|0k〉. (13)

Writing dσµ0k
(ha) as

dσµ0(ha) = exp(iµβ)dσµ0(a) = exp(iµβ)(detgM)
−1/49σ

µ(α) (14)

the e-value equation (12) becomes

(−∂2
α + (µ2 + 1

4) cosh−2 α + 1
4)9

σ
µ(α) = −σ(σ + 1)9σ

µ(α) (15)

which is equivalent to the Schrödinger equation for the potential barrierV = cosh−2 α with
an extra constant energy shift of1

4. Note that if we were to diagonolize the operator (9)
in the space of matrix elements written between purely compact basis, the sign of potential
would be negative. The wavefunctions of the Schödinger equation (15) are given in terms
of the Legendre functions [12] by

9σ
µ(α) = cosh1/2(πρ) cosh−1/2(α)

cosh(πρ)− i sinh(πµ)
(P iµσ (i sinhα)+ P iµσ (−i sinhα)) (16)

which are normalized as (see appendix B)∫ ∞

−∞
dα 9σ

µ9
σ ′
µ′ = δ(µ− µ′)δ(σ − σ ′)

ρ tanhπρ
. (17)
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4. Path integration over the coset spaceM = G/K

The probability amplitude for the particle of ‘moment of inertia’m, to travel in the space
M from the pointξa to ξb in the time intervalT is expressed by the path integral which in
the time-graded formulation is given by

K(ξa, ξb; T ) = lim
n→∞

∫ n∏
j=1

dξj
n+1∏
j=1

K(ξj−1, ξj ; ε) (18)

with T = (n+ 1)ε and dξj = (detgM)1/2 dαj dβj .
The Kernel connecting the pointsξj−1 and ξj separated by the small time interval

tj − tj−1 = ε is [4]

Kj = K(ξj−1, ξj ; ε) =
( m

2iπε

)3/2
exp(iSj ) (19)

whereSj is the short-time-interval action

Sj = m

2ε
δ2
j−1,j . (20)

The invariant distance between the points is

δ2
j,j−1 = (ξj − ξj−1, ξj − ξj−1) = 2 − 2 coshθj−1,j (21)

with

coshθj−1,j = coshαj−1 coshαj cosh(βj−1 − βj )− sinhαj−1 sinhαj . (22)

The short-time-interval Kernel (19) can be expanded in terms of the Legendre functions
Pσ (coshθ) as (withσ = − 1

2 + iρ )

Kj−1,j =
∫ ∞

0
dρ ρ tanh(πρ)CσPσ (coshθj−1,j ). (23)

From the orthogonality condition∫ ∞

1
dz Pσ (z)Pσ ′(z) = 1

ρ tanhπρ
δ(σ − σ ′) (24)

the coefficientsCσ are obtained:

Cσ = − m√
πε

exp

(
− iπ

ε

)
Kiρ

(
−m
ε

)
. (25)

HereKiρ is the MacDonald function. Inε → 0 limit, by using the asymptotic form of the
MacDonald function [13] we can write the short-time-interval Kernel (19) as

Kj '
∫ ∞

0
dρ ρ tanhπρ exp

(
iε

2m
σ(σ + 1)

)
Pσ (coshθj ). (26)

With the help of the addition theorem (see appendix C) for the complete set of functions
on the homogeneous spaceM we get

Kj =
∫ ∞

−∞
dµ

∫ ∞

0
dρ ρ tanhπρ exp

(
iε

2m
σ(σ + 1)

)
dσµ0(ξj−1)d

σ
µ0(ξj ). (27)

We first insert the above form of the short-time-interval Kernel into (18); then by making
use of the orthogonality condition (17) we can execute the

∏n
j−1 dξ integrals:

K(ξa, ξb; T ) =
∫ ∞

−∞
dµ

∫ ∞

0
dρ ρ tanhπρ exp

(
− i(ρ2 + 1

4)

2m
T

)
dσµ0(ξa)d

σ
µ0(ξb). (28)
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By using the addition theorem the Kernel (28) can be written in the form

K(ξa, ξb; T ) =
∫ ∞

0
dρ ρ tanhπρ exp

(
−i
ρ2 + 1

4

2m
T

)
Pσ (coshθab) (29)

where coshθab depends on the coordinates of the pointsa andb through the relation defined
by (22).

The Fourier transform of (29) can be calculated to obtain the energy-dependent Green
functionG(ξa, ξb;E):
G(ξa, ξb;E) =

∫ ∞

0
exp(iET )K(ξa, ξb; T ) = 2mQ− 1

2 −i
√
(2mE− 1

4 )
(coshθab) (30)

whereQ is the Legendre function of the second kind. In deriving (30) we used the
connection between the Legendre functions of the first and second kind [14]∫ ∞

0
dx
x tanhπx

a2 + x2
P− 1

2 +ix(z) = Qa− 1
2
(z). (31)

5. Path integral for the potential barrier V = V0cosh−2(ωx)

The phase space path integral for the particle of massm moving under the influence of the
potential barrierV = V0 cosh−2(ωx) is

K(xa, xb; T ) =
∫

Dx Dpx exp

(
i
∫ T

0
dt (px − p2

x/2m− V0 cosh−2ωx)

)
(32)

which is in the time-graded formulation equal to

K(xa, xb; T ) = lim
n→∞

∫ n∏
j=1

dxj
n+1∏
j=1

d
pxj

2π

n+1∏
j=1

exp[i(pxj (xj − xj−1)

−εp2
xj /2m− εV0 cosh−2ωxj )]. (33)

The phase space formulation (32) easily enables us to establish the connection between
our quantum mechanical problem and the path integration over the coset spaceM =
SO(1, 2)/K. In fact when we consider the HamiltonianHM for the particle motion over
the coset spaceM = G/K (recall the Scḧodinger equation (15))

HM − 1

4
⇒ 1

2m
(p2

α + p2
β cosh−2 α)− 1

4

(
ω2

2m

)
(34)

we observe that the Hamiltonian in the action of (32) resembles the above Hamiltonian
with the momentumpβ fixed to the valuepβ = √

(2mV0). In writing (34) we introduced
the corrections due to parametersω and (2m) which were equal to 1 in sections 3 and 4.
Thus we can convert the path integral (32) into the path integral for the motion in the space
M = G/K. We first rescalex by ωx = α; px = ωpα and arrive at

K(xa, xb; T ) = ω

∫
DαDpα exp[i

∫ ω2T

0
dt (pαα − p2

α/2m− V0 cosh−2 α)]. (35)

We then rewrite the potential term in the above path integral by introducing an auxiliary
dynamics by extending the phase space with the identity

exp

[
− i

( ∫ ω2T

0
dt V0 cosh−2 α

)]
=

∫
dβb exp(−√

(2mV0/ω
2)(βb − βa))

× lim
n→∞

∫ n∏
j=1

dβj
n+1∏
j=1

d
pβj

2π

n+1∏
j=1

exp

(
i(pβj (βj − βj−1)−

ω2εp2
βj

2m cosh2 α

)
(36)



Path integration overSO(1, 2) 179

which can be proved by direct calculation. Note that the phase space formulation is essential
for the above identity which establishes the connection between our quantum mechanical
problem and the partical mation overM. The identity of (36) enables us to re-express (35)
as

K(xa, xb; T ) = ω

∫
dβb exp(−√

(2mV0/ω
2)(βb − βa)) exp

(
i
ω2

8m
T

)
KM(ξa, ξb; T ) (37)

whereKM is the Kernel for the motion over the manifoldM = G/K which is studied in the
previous chapter. The factor exp(i ω

2

8mT ) in the above equation reflects (see equations (15)
and (34)) the1

4 energy difference between the potential barrier cosh−2ωx and the particle
motion over the coset spaceM. We then insert the expression (28) into (37), use (14) for
the matrix elementsdσµ0 and arrive at

K(xa, xb; T ) = 2πω(coshωxa coshωxb)
−1/2

∫
dρ ρ tanhπρ exp

(
−i
ρ2ω2

2m
T

)
×ψσ

(2mV0)
1/2

ω

(ωxa)ψ
σ
(2mV0)

1/2

ω

(ωxb) (38)

which displays the wavefunctions. The asymptotic form of the wavefunctions are

lim
x→∞ψ

σ
(2mV0)

1/2

ω

(ωx) ' 0( 1
2 − iρ)

0( 1
2 − i(ρ + (2mV0)1/2

ω
))

exp(−iρωx) (39)

lim
x→−∞ψ

σ
(2mV0)

1/2

ω

(ωx) ' 0( 1
2 − iρ)

0( 1
2 − i(ρ + (2mV0)1/2

ω
))
(T exp(−iρωx)+ R exp(iρωx)) (40)

in which the transition and the reflection coefficients are identified as

T = 0( 1
2 + i(ρ + (2mV0)

1/2

ω
))0( 1

2 + i(ρ − (2mV0)
1/2

ω
))

0(iρ)0(1 + iρ)
(41)

R = 0( 1
2 + i(ρ + (2mV0)

1/2

ω
))0( 1

2 + i(ρ − (2mV0)
1/2

ω
))0(−iρ)

0( 1
2 + i (2mV0)1/2

ω
)0( 1

2 − i (2mV0)1/2

ω
)0(iρ)

. (42)

If one considers the same potential barrier in motion with a constant speed

V (x, t) = V0

cosh2ω(x − g0t)
g0 = constant (43)

the Kernel becomes [15]

Kg0(xa, xb; T ) = exp
(
−i
m

2
g2

0T
)

exp(−img0(xb − xa))K(xa − g0ta, xb − g0tb : T ). (44)

Here the form ofK is given by (38). From the above formula the wavefunctions are
recognized as

ψg0(x, t) = exp
(
−i
m

2
g2

0t
)

exp(−img0x)ψ
σ
(2mV0)

1/2

ω

(ω(x − g0t)) (45)

whereψ(ω(x − g0t)) is obtained from the static one given in (16) and (38) by simply
replacingx by x − g0t . For finite values of time variablet the transition and the reflection
coefficients remain in the static forms of (41) and (42).

Inspecting the limiting forms ofT andR we obtains∣∣∣∣TR
∣∣∣∣ → ∞ asρ → ∞ and

∣∣∣∣TR
∣∣∣∣ → 0 asρ → 0. (46)
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We see that the low-energy waves are mostly reflected, while the high-energy waves are
more easily transmitted through the barrier.

Inspecting (47) and the asymptotic forms asx → ∞ we observe that the barrier motion
contributes the following constant additional term to the energy:

1E = mg2
0

2
− ρωg0. (47)

The first term of the above extra energy is of the kinetic energy type (asg0 has the dimension
of velocity). It is also interesting that the barrier motion introduces the extra undulation of
a Doppler nature through the exp(−img0x) term in the wavefunction.

Appendix A. The unitary irreducible representations of the group SO(1, 2) in the
mixed basis

We will construct the irreducible representations of the pseudo-orthogonal groupG =
SO(1, 2) in the space of the infinitely differentiable homogeneous functionsF(y) with
the homogenity degreeσ on the coneY : [y, y] = 0.

T σ (g)F (y) = F(yg) g ∈ G, y ∈ Y (A.1)

F(ay) = aσF (y) a ∈ R, σ ∈ C. (A.2)

In order to construct the matrix elements of the representation in the mixed basis we
have to define the cone in two coordinate systems corresponding to these bases. Use the
Iwasawa decompositions for the groupSO(1, 2) [7]:

g = n(t)a(θ)k(φ) g ∈ G (A.3)

g = n(t)I εa(γ )h(β) g ∈ G. (A.4)

Here the elementn of the nilpotent subgroup and other matricesa, h, k are the ones
defined in (2). The stationary point of the nilpotent subgroup isẏ = (1, 0, 1):

ẏn(t) = ẏ. (A.5)

The coset spaceY = G/N is equivalent to the coneY given byy = ẏg which can be
defined in two realizations as

y = exp(γk)sk sk = ẏk(φ) = (1, sinφ, cosφ) (A.6)

y = exp(γh)sh sh = ẏh(β) = (coshβ, sinhβ, (−1)ε). (A.7)

The connection between the above realizations is

exp(γh)sh = exp(γk)sk (A.8)

or

coshβ exp(γh) = exp(γk) cosφ = (−1)ε

coshβ
sinφ = tanhβ. (A.9)

Using (A.2) we get

F(y) = exp(γhσ )F (sh) = exp(γkσ )F (sk). (A.10)

We know that the principal series of the irreducible representation in the compact basis (the
group decomposition isg = kak ) is unitary with respect to the scalar product

(F1, F2) = 1

2π

∫ 2π

0
dφ F(sk)F (sk) (A.11)
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if σ = − 1
2 + iρ, ρ ∈ (0,∞) [11]. Using the relation (A.10) we can introduce the scalar

product in the space of representation in the mixed basis:

〈F1, F2〉 = 1

2π

∫ 2π

0
dφ exp((γh − γk)σ ))F (sh)F (sk). (A.12)

The invariant bilinear Hermitian form (A.12) can be written as

〈F1, F2〉 = 1

2π

∫ ∞

−∞
dβ coshβσF (sh)F (sk). (A.13)

From (A.1) we get the representation formulae corresponding to the above-mentioned
realizations:

T σ (g)F (sk) = exp((γ gk − γk)σ )F (skg ) g ∈ G (A.14)

T σ (g)F (sh) = exp((γ gh − γh)σ )F (shg ) g ∈ G. (A.15)

Hereskg andshg are defined as

exp(γ gk )skg = exp(γk)skg

exp(γ gh )shg = exp(γh)shg.
(A.16)

We see that the natural representations for the maximal compactk = SO(2) and non-
compacth = SO(1, 1) subgroups corresponding to the realizations of the representations
(A.14) and (A.15) are

T σ (k(φ0))F (sk(φ)) = F(sk(φ+φ0)) (A.17)

and

T σ (h(β0)F (sh(β)) = F(sh(β+β0)). (A.18)

By the help of the expansion formulae

F(sk) =
∞∑

n=−∞
Cn exp(inφ)

F (sh) =
∫ ∞

−∞
dµCµ exp(iµβ)

(A.19)

we can rewrite (A.17) and (A.18) as

T (k(φ0)) exp(inφ) = exp(inφ0) exp(inφ)

T (h(β0) exp(iµβ) = exp(iµβ0) exp(iµβ)
(A.20)

which coincide with the unitary irreducible representations of the subgroupsSO(2) and
SO(1, 1).

Now we are ready to construct the unitary irreducible representation for the group
SO(1, 2) in the mixed basis. Let us introduce the functionD(g):

D(g) = 〈F1|T σ (g)|F2〉 (A.21)

in terms of the Hermitian bilinear form given by (A.13). Using the expansion formulae
(A.19) we obtain

D(g) =
∞∑

n=−∞

∫ ∞

−∞
dµCnCµd

σ
µn(g) (A.22)

wheredσµn(g) are the matrix elements of the unitary irreducible representation

dσµn(g) = 〈µ|T σ (g)|n〉 g = hak ∈ G. (A.23)
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By the help of the group propertyT σ (hak) = T (h)T σ (a)T (k) and the expressions in (A.20)
we obtain

dσµn(g) = exp(−iµβ)〈µ|T σ (a)|n〉 exp(inφ). (A.24)

The integral representation for the matrix elements corresponding to the subgroupa(α) is
(in the casen = 0)

dσµ0k (a) =
1∑
ε=0

∫ ∞

−∞
dβ exp(−iµβ)(coshβ coshα + (−1)ε sinhα)σ . (A.25)

Evaluating this integral we get

dσµ0k (a(α)) = cosh1/2(πρ)

cosh(πρ)− i sinh(πµ)
(P iµσ (i sinhα)+ P iµσ (−i sinhα)). (A.26)

Appendix B. The orthogonality condition

Consider the expression

Bσσ
′

µµ′ =
∫
G

dg dσµ0k (g)d
σ ′
µ′0k (g) (B.1)

with g = hak. We first change the variables in the above integral:

hak = k′a′k′′ (B.2)

which is equivalent to passing fromg = hak to the Cartan decompositiong′ = k′a′k′′ [7].
Using the completness condition for the matrix elements of the maximal compact subgroup
K = SO(2):

∞∑
n=−∞

|n〉〈n| = 1 (B.3)

and the equality

dσµ0k (g) = 〈µ|T σ (g)|0k〉 =
∞∑

n=−∞
〈µ|n〉〈n|T σ (g)|0k〉 =

∞∑
n=−∞

〈µ|n〉dσn0k (g) (B.4)

we get

Bσσ
′

µµ′ =
∞∑

n,n′=−∞
〈µ|n〉〈µ′|n′〉

∫
G′

dg′ dσn0k (g
′)dσ ′

n′0k (g
′)

=
∞∑

n,n′=−∞
〈µ|n〉〈µ′|n′〉δ(ρ − ρ ′)δnn′

ρ tanhπρ
= δ(ρ − ρ ′)δ(µ− µ′)

ρ tanhπρ
. (B.5)

In (B.5) we used the orthogonality condition of the matrix elements in the Cartan basis
[7, 9]. together with the orthogonality condition for the matrix elements of the maximal
noncompact subgroupSO(1, 1):

〈µ|µ′〉 = δ(µ− µ′). (B.6)

It is obviously equivalent to∫
G

dg dσµ0k (g)d
σ ′
µ′0k (g) = δ(ρ − ρ ′)δ(µ− µ′)

ρ tanhπρ
(B.7)

where the invariant measure is dg = (detm g)1/2 dα dβ dφ.
Taking into account (14) we get the orthogonality condition for the wavefunctions:∫ ∞

−∞
dα 9σ

µ9
σ ′
µ′ = δ(µ− µ′)δ(σ − σ ′)

ρ tanhπρ
. (B.8)
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Appendix C. The addition theorem and the completeness condition

Note that the Legendre functions appear as the zonal spherical functions of the representation
of the groupSO(1, 2) if the elements of the groupG has the Cartan decompositiong = kak′:

P σ (coshθ) = dσ0k ,0k (a(θ)). (C.1)

Suppose thatg1 and g2 are the elements of the groupG which have the following
decompositions:

gj = hjajkj j = 1, 2 and g12 = h12a12k12 = g−1
1 g2. (C.2)

Write the elementg12 in the Cartan decomposition:

g12 = k′
12a

′
12k12 (C.3)

Using (C.1), (C.2) and (C.3) we obtain

P σ (coshθ12) = dσ0k ,0k (a(θ12)) = dσ0k ,0k (k
′
12a(θ12)k12)

= dσ0k ,0k (g
−1
1 g2) =

∫ ∞

−∞
dµdσ0k ,µ(g

−1
1 )dσµ,0k (g2). (C.4)

Making use of the property of the matrix elements

d−σ−1
0k ,µ

(g−1) = dσµ,0k (g) (C.5)

and the equivalence of the representationsT σ andT −σ−1 [9] we get the final result:

Pσ (coshθ12) =
∫ ∞

−∞
dµdσµ,0k (g1)d

σ
µ,0k (g2). (C.6)

Here coshθ12 is defined from the algebraic equation (C.3) and is given by

coshθ1,2 = coshα1 coshα2 cosh(β1 − β2)− sinhα1 sinhα2 (C.7)

which coincides with (22).
The completness condition for the matrix elements on the homogeneous spaceg ∈ M

are given by ∫ ∞

0
dρ ρ tanhπρ

∫ ∞

−∞
dµdσµ0k (g)d

σ
µ0k
(g′) = δ(g − g′). (C.8)

To prove the above relation one considers the connection between the invariant differential
operator (Laplace–Beltrami operator) on the manifoldM with the Schr̈odinger equation.
Since the Schr̈odinger equation has only a continuous specrum, the spectrum of the invariant
differential operator should also be continuous. Therefore the discrete unitary series of the
irreducible representation does not make a contribution and can be ignored. From the
physical point of view the complementary series can also be ignored.
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